
NSDF-FUSE: A Testbed for Studying Object Storage
via FUSE File Systems

Paula Olaya⇤, Jakob Luettgau⇤, Naweiluo Zhou⇤, Giorgio Scorzelli§,
Jay Lofstead†, Valerio Pascucci§, Michela Taufer⇤

University of Tennessee Knoxville ⇤ Sandia National Laboratories† University of Utah§
{polaya,jluettga,naweiluo.zhou,taufer}@utk.edu {g�ofst}@sandia.gov {u0705839, valerio.pascucci}@utah.edu

ABSTRACT
This work presents NSDF-FUSE, a testbed for evaluating settings
and performance of FUSE-based �le systems on top of S3-compatible
object storage; the testbed is part of a suite of services from the
National Science Data Fabric (NSDF) project (an NSF-funded project
that is delivering cyberinfrastructures for data scientists).We demon-
strate how NSDF-FUSE can be deployed to evaluate eight di�erent
mapping packages that mount S3-compatible object storage to a
�le system, as well as six data patterns representing di�erent I/O
operations on two cloud platforms. NSDF-FUSE is open-source
and can be easily extended to run with other software mapping
packages and di�erent cloud platforms.

KEYWORDS
Cloud, Object Storage, Performance, FUSE, File System
ACM Reference Format:
Paula Olaya⇤, Jakob Luettgau⇤, Naweiluo Zhou⇤, Giorgio Scorzelli§,, Jay
Lofstead†, Valerio Pascucci§, Michela Taufer⇤ . 2022. NSDF-FUSE: A Testbed
for Studying Object Storage via FUSE File Systems. In Proceedings of The 31st
International ACM Symposium on High-Performance Parallel and Distributed
Computing (HPDC’22). ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Across cloud platforms, data is generated at unprecedented rates;
managing the large amount of data is causing scalability and re-
silience problems for users. Cloud storage technology such as object
storage can provide scalable and resilient solutions for cloud data.
However, users are reluctant to move their data to object storage
as their legacy applications are often optimized to run on local and
HPC �le systems. One solution is to mount cloud object storage
data directly into a �le system. Filesystem in USErspace (FUSE) en-
ables legacy applications to read from and write to �les in a object
storage as though they were from local or HPC �le systems. Specif-
ically, FUSE is deployed by mapping software packages that serve
as bridges to object storage for those applications (see Figure 1).
Still, users are left with the need to understand merits and pitfalls
of existing packages when mapping object storage to �le systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC’22, June-July 2022, Minneapolis, MN, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Data from S3-compatible object storage to �le sys-
tem through FUSE-basedmapping packages and NSDF-FUSE.

To address this need, we propose NSDF-FUSE, a testbed for eval-
uating settings and performance of FUSE-based �le systems on
top of S3-compatible object storage. NSDF-FUSE is part of a suite
of services from the National Science Data Fabric (NSDF) project
(an NSF-funded project that is delivering cyberinfrastructures for
data scientists) [1]. The testbed comprises of multiple benchmarks
that allow users to mount object storage buckets as �le systems on
Linux or macOS systems using di�erent mapping packages and to
test their performance across cloud platforms. NSDF-FUSE builds
on these contributions: (i) the characterization of available map-
ping packages; (ii) a set of I/O jobs representative of data patterns
on cloud; and (iii) di�erent tests to measure peak performance for
di�erent cloud platforms. We demonstrate the NSDF-FUSE capa-
bilities for eight di�erent FUSE-based mapping packages on top of
S3-compatible object storage and two cloud platforms.

2 METHODOLOGY
NSDF-FUSE evaluates eight common mapping packages for inte-
grating object storage with �le systems: Goofys, an only partially
POSIX-compliant tool optimized for high-performance [2]; GeeseFS,
a fork of Goofys focusing on support for small �les and metadata
operations [3]; JuiceFS, an optimized tool for shared access and
high performance by allowing to use a dedicated backend server
for metadata [4]; ObjectiveFS, an optimized tool for shared access
and automatic scalability and portability [5]; rclone, a collection
of command-line utilities including the option to mount S3 via
FUSE [6]; s3backer, a �le system mapping blocks of a single �le to
objects and mounts this �les as a loop device [7]; s3fs, a �le systems
mapping object names to �le paths in the mounted �lesystem [8];
and s3ql, a �le systems implemented in Python and designed to
favor simplicity and elegance over performance [9]. Each one of
the eight packages with its di�erent characteristics can be classi�ed
based on (i) the availability of the code (i.e., open source or not);
(ii) the full or partial support of POSIX standards; (iii) the direct
(i.e., �le-object) or chunked (i.e., �le-blocks-objects) transformation

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HPDC’22, June-July 2022, Minneapolis, MN, USA
Paula Olaya⇤ , Jakob Lue�gau⇤ , Naweiluo Zhou⇤ , Giorgio Scorzelli§ ,

Jay Lofstead† , Valerio Pascucci§ , Michela Taufer⇤

of data layout from �le system to object storage; (iv) the location
of the �le system metadata: inferred from the name of the objects
or as an independent object within the bucket; and �nally, (v) the
support of data compression to minimize transfer time and storage
costs. Table 1 summarizes the characteristics of the eight packages.

Table 1: Characteristics of the available mapping packages.
Mapping
package

Open
Source

POSIX Data
mapping

Metadata
location

Com-
pression

Goofys Yes Partial Direct In name No
GeeseFS Yes Partial Direct In name No
JuiceFS Yes Full Chunked In bucket* Yes
ObjectiveFS No Full Chunked In bucket Yes
rclone Yes Partial Direct In bucket No
s3backer Yes Full Chunked In bucket Yes
s3fs Yes Partial Direct In name No
s3ql Yes Full Chunked In bucket No
*JuiceFS o�ers a dedicated server for the metadata

In NSDF-FUSE, we adopt a plugin-system approach where the
user can de�ne the mapping packages to use and select among a
set of available actions including: (i) installing the software pack-
ages among those available; (ii) creating and deleting a bucket;
(iii) mounting and unmounting a bucket as a �le-system; and (iv)
evaluating the I/O performance for di�erent testing scenarios for
each package. The testing scenarios focus on network I/O and thus,
data is not cached (i.e., with a cold-like access). The assumption
here is that when data is cached, the �le system does not behave
much di�erent from a normal FUSE �le system. NSDF-FUSE allow
users to measure how fast one can retrieve data from the cloud in
comparison to direct use of S3 API access.

We de�ne six I/O jobs that are representatives of data access
patterns (i.e., sequential or contiguous access, where the system
knows how to access data through the network vs. random or
sparse access, where the system cannot guess a priori what to
access next) and that are of interest for NSDF applications. The
jobs are as follows: Job 1 Sequential write of eight large �les (each
�le with size 1GB), written sequentially by a single writer; Job 2
Sequential reads of eight large �les (each �le with size 1GB), read
sequentially by a single reader; Job 3 Sequential writes of eight
large �les (each �le with size 1GB), each one written concurrently
by one writer (8 writers); Job 4 Sequential read of 8 large �le (each
�le with size 1GB), each one read concurrently by one reader (8
readers); Job 5 Random writes of 32,768 small �les (each �le with
size 64KB), where each one of 16 writers writes 2,048 �les for a total
of 128MiB per writer; and Job 6 Random reads of 32,768 small �les
(64KB), where each one of 16 readers reads 2,048 �les for a total of
128MiB per reader. Each pattern mimics possible I/O accesses in
real applications on the cloud and at the edge.

NSDF-FUSE enables the integration of new packages: the user
can add the installation, mounting, and unmounting actions with a
newmapping package and the rest of the actions (i.e., creating, delet-
ing, evaluating) are available for deployment. It is also possible to
set several versions of each package with di�erent parameters (e.g.,
TARGET=geese.v1, geese.v2). Testing can be executed on di�erent
cloud platforms by setting the proper credentials and endpoints.

3 RESULTS
We use NSDF-FUSE to collect peak I/O performance across two
cloud platforms (the cloud vendors are not revealed for privacy rea-
sons). We use the mapping packages’ best-practices recommended
by developers and the cloud community at large. The peak I/O
performance presented in Table 2 is collected from tests executed
across multiple days, to mitigate noisy neighbors in the cloud, and
repeated 5 times for each I/O job.
Table 2: Peak I/O performance for 6 jobs on 2 cloud platforms.
Mapping Cloud A - Peak I/O performance [MiB/s] Cloud B - Peak I/O performance [MiB/s]
Package Job1 Job2 Job3 Job4 Job5 Job6 Job1 Job2 Job3 Job4 Job5 Job6
Goofys 248 546 481 1638 9 28 136 431 356 910 15 78
GeeseFS 248 455 910 585 19 34 136 409 356 146 28 51
JuiceFS 455 327 744 431 13 25 148 47 327 43 11 15
ObjectiveFS 195 315 273 327 41 39 117 240 282 356 62 40
rclone 107 85 372 682 8 16 89 95 372 630 32 47
s3backer 84 81 102 91 62 51 39 130 42 126 29 34
s3fs 74 117 91 136 1 3 34 512 41 585 4 12
s3ql 44 64 56 117 32 9 13 46 6 31 12 9

Based on the results of Table 2, we observe that there is not
an optimal mapping package and cloud platform that provide the
highest I/O performance for all data patterns. Depending on the
type of I/O (i.e., heavy read or heavy write, sequential or random)
in a work�ow, the user can use NSDF-FUSE to test and study their
optimal solution. The next statements are the type of conclusions
that NSDF-FUSE allows the user to reach given di�erent scenarios.
For Job 1, JuiceFS and for Job 2, Goofys enable the highest I/O
performance for both cloud platforms. For Job 3 and Job 4, the
highest performance is achieved in Cloud A using Goofys. Finally,
for Job 5 and for job 6 the optimal I/O is obtained in Cloud B using
ObjectiveFS and Goofys respectively.

4 CONCLUSION
In this work, we present NSDF-FUSE, a testbed for evaluating set-
tings and I/O performance of FUSE-based �le systems on top of
S3-compatible object storage. NSDF-FUSE enables the user to reach
a comprehensive analysis about di�erent mapping packages de-
pending on a speci�c I/O pattern and cloud platform.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foun-
dation under Grant No. 2138811. Sandia National Laboratories is a mul-
timission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honey-
well International Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

REFERENCES
[1] “National Science Data Fabric: A Platform Agnostic Testbed for Democratizing

Data Delivery.” http://nationalsciencedatafabric.org/. [Online 04-03-2022].
[2] Ka-Hing Cheung, “Goofys.” https://github.com/kahing/goofys. [Online; accessed

04-03-2022].
[3] Yandex LLC, “GeeseFS.” https://github.com/yandex-cloud/geesefs. [Online; ac-

cessed 04-03-2022].
[4] Juicedata INC, “JuiceFS.” https://github.com/juicedata/juicefs. [Online; accessed

04-03-2022].
[5] Objective Security Corp, “ObjectiveFS.” https://objectivefs.com/. [Online; accessed

04-03-2022].
[6] Rclone, “Rclone.” https://github.com/rclone/rclone. [Online; accessed 04-03-2022].
[7] Archie L. Cobbs, “s3backer.” https://github.com/archiecobbs/s3backer. [Online;

accessed 04-03-2022].
[8] s3fs-fuse, “s3fs.” https://github.com/s3fs-fuse/s3fs-fuse. [Online; accessed 04-03-

2022].
[9] Nikolaus Rath, “S3QL.” https://github.com/s3ql/s3ql. [Online; accessed 04-03-2022].

http://nationalsciencedatafabric.org/
https://github.com/kahing/goofys
https://github.com/yandex-cloud/geesefs
https://github.com/juicedata/juicefs
https://objectivefs.com/
https://github.com/rclone/rclone
https://github.com/archiecobbs/s3backer
https://github.com/s3fs-fuse/s3fs-fuse
https://github.com/s3ql/s3ql

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusion
	Acknowledgments
	References

