

Legacy Applications using Object Storage

- Data is being generated at unprecedented rates across cloud platforms; managing this large amount of data impacts scalability and resilience in legacy applications.
- Object storage can provide scalable and resilient solutions, however, most legacy applications are optimized to run on local and HPC file systems; rewriting them is not an option.
- Filesystem userspace-based (FUSE) mapping packages serve as a bridge to enable legacy applications to access data in an object storage as though they were executed from local or HPC file systems, still...

Users need to understand merits and pitfalls of existing packages when mapping object storage to file systems.

Mapping Packages	
------------------	--

NSDF-FUSE evaluates 8 common mapping packages.

Mapping Package	Open Source	POSIX	Data Mapping	Metadata Compression Location	Job 1	Sequential write, large files, 1 write
Goofys		Partial	Direct	In name	Job 2	Sequential read, large files, 1 reade
GeeseFS		Partial	Direct	In name		
JuiceFS		Full	Full	In bucket*	Job 3	Sequential write, large files, 8 write
ObjectiveFS	×	Full	Full	In bucket	Job 4	Sequential read, large files, 8 reade
rclone		Partial	Direct	In bucket		
s3backer		Full	Full	In bucket	Job 5	Random write, small files, 16 writer
s3fs		Partial	Direct	In name	Job 6	Random read, small files, 16 reader
s3ql	\checkmark	Full	Full	In bucket		

* JuiceFS offers a dedicated server for metadata

POSIX: the full or partial support of POSIX standards. Data Mapping: the direct (i.e., file-object) or chunked (i.e., file-blocks-objects) transformation of data layout from file system to object storage. Metadata location: Inferred from the name of the objects or as an independent object within the bucket

NSDF-FUSE: A Testbed for Studying Object Storage via FUSE File Systems Paula Olaya^{*}, Jakob Luettgau^{*}, Naweiluo Zhou^{*}, Giorgio Scorzelli[§], Jay Lofstead^{*}, Valerio Pascucci[§], Michela Taufer *University of Tennessee Knoxville, *Sandia National Laboratories, [§]University of Utah

I/O Jobs

NSDF-FUSE includes 6 I/O jobs, representatives of different data access patterns.

Each pattern mimics possible I/O accesses in real applications on the cloud and at the edge.

I/O Performance Across Cloud Platforms Using NSDF-FUSE

We deploy NSDF-FUSE to measure peak I/O performance for six I/O jobs on two cloud platforms.

Mapping	Cloud A - Peak Throughput [MiB/s]						Cloud B - Peak Throughput [MiB/s]					
Package	Job 1	Job 2	Job 3	Job 4	Job 5	Job 6	Job 1	Job 2	Job 3	Job 4	Job 5	Job 6
Goofys	248	546	481	1638	9	28	136	431	356	910	15	78
GeeseFS	248	455	910	585	19	34	136	409	356	146	28	51
JuiceFS	455	327	744	431	13	25	148	47	327	43	11	15
ObjectiveFS	195	315	273	327	41	39	117	240	282	356	62	40
rclone	107	85	372	682	8	16	89	95	372	630	32	47
s3backer	84	81	102	91	62	51	39	130	42	126	29	34
s3fs	74	117	91	136	1	3	34	512	41	585	4	12
s3ql	44	64	56	117	32	9	13	46	6	31	12	9

Even when there is not an optimal mapping package and cloud platform that provides the highest I/O performance for all data patterns, **NSDF-FUSE allows the** user to reach comprehensive conclusions about mapping packages given different data patterns and cloud platforms.

Acknowledgments:

Work supported by National Science Foundation Grant No. 2138811

Best I/O

- For Job 1, JuiceFS and for Job 2, Goofys enable the highest I/O performance for both cloud platforms.
- For Job 3 and Job 4, the highest performance is achieved in Cloud A using Goofys.
- For Job 5, ObjectiveFS and for Job 6 Goofys provide the optimal I/O in Cloud B.

DE-FUS' on Git

